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_:‘ / Abstract

A mechanism is described for achicving a desired force/motion relationship. The

mechanism employs twaq hinged arms with pulleys and springs. In comparison to active
force-control methods, the device is compact, energy saving, and robust. The device is
ideally suited to miniature devices and, in a recent application, has been used in a mobile

robot for inspecting pipes.

The relationship between the motion of the mechanism and its output force is analyzed
using both analytical and approximate techniques to determine the optimum
configuration and the dimensions of the various components. In the final design,

experimental results demonstrate the superiority of non-circular eccentric pulleys over

-

conventional pulleys for prodﬁcing a specified force /motion curve. M» Y %ﬂw .
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1. Introduction
A Coil springs arc commonly used in force generating mechanisms when it is necessary to
. obtain a force Lhat increases with the amount of extension or stretch. lowever, when the
. desired lorce is not dircctly proportional to the amount of extension, the force-generating
mechanism must be modified [t]. Active servomechanisms may be used to control the
spring extension, resulting in a constant force over a considerable distance. [lowever, such
) mcthods make the force generating mechanism complex and costly. To avoid these
‘ difficulties, the concept of *force gencration by using pulleys and springs® (I'GPS) has
been considered [2].

- The original application for the mechanism described in this paper was a mobile robot
' for inspecting the inside of pipes. The robot presses against the pipe walls for traction
and, ideally, the pressure should be independent of pipe diameter. Since the inspection
robot must be quite small (small enough to fit in a pipe of 65mm inside diameter), it is
important to find a constant-force mechanism that avoids the complexity of a servo
system. Figure 4 illustrates the basic mechanism described in this paper. It consists of
two arms hinged at one end to form a symmetric, collapsable structure. As the arms move
| apart, they drive two pulleys through intermediate gears. An extension spring is
. connected to cables that run between the two pulleys and resists the separating motion of
- the arms. Both circular and non-circular pulleys were considered for the device. The
shape of the non-circular pulleys is adapted from a conical fusee as shown in Figure 8. The
non-circular pulleys are designed so that the pulley radius can be expressed as a linear
- function of angular displacement. Analytical and approximate methods are discussed for
. deriving the desired relationship between the angle and pulley radius. Circular and non-

circular pulleys have also fabricated and compared in experiments.

‘e

2. Description of Mechanism for Force Generation

N )

Nomenclature:

vertex of mechanism

tip of left arm

tip of right arm

mechanism for pulling the arms together
force against rails m1 and m2

height of mechanism
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h length of arm, AB or AC, of mechanismn
ml,m2 rails supporting device
0 angle between arms

Figure 1 shows a simplified, two-dimensional schematic of the device riding between two
rails, m1 and m2. A wheel is mounted at the lower tip of each arm and at the vertex, A, of
the device. The goal is to construct a mechanism, D, that will pull the arms together,

generating a force, F, that remains constant over a wide range of heights, H.

For the solution of this problem, six types of mechanisms, as shown in Figure 2, have
been investigated. Dots in the figure show pivot joints which rotate freely. All of the
mechanisms are symmetric with respect to the line bisecting the angle 0. For calculating
the relation between the angle @ and force F, let us suppose that two ends of each spring
connect directly to free joints. Also, let k stand for the elasticity of a spring and L for the
length of the spring in a no-load condition. Note that the mechanism is in equilibrium
when the sum of the moments about any point in the system is zero. The relation between
the angle, 0, and force, F, of each mechanism is obtained as shown in Appendix A, using
the partial length T of the two arms and the lengths a, b, and ¢ of subsidiary links in
Figure 2.

Figure 3 shows the calculated results of the relation between the distance
H = h cos(8/2) and force, F, of the linkage types in Figure 1 when the springs are all the
same in elasticity. It is observed from the figure that for most structures the force, F,
increases as the distance H decreases. However, in the curves (a), (c), and (e) the force
tends to decrease as the distance becomes small. A large change of the value of Fis
observed in the curves (a), (d), and (f). The incompleteness of the curves (d) and (f) is due
to motional limitations of the linkages. We can see that none of the six curves is linear.
The curve (e) is the most linear of the six, and thus, the mechanism in Figure 2(e) is
considered to be the most appropriate to produce a constant force for a range of angles 0.
However, the mechanism is too complex for actual use. In general we observe that the
spring stretches too much to keep the force Fconstant. This is caused by the fact that the
ends of the spring are connected directly to points on the linkages. For better results, the

ends of the spring could be connected to a body with an adjustable position or length,




instead of a fixed body. Therelore, we will consider the modified mechanisms in the

following section.

3. Force Generation by Using Pulleys and Spring

Based on the considerations in Section 2, we have devised a linkage {or the constant {orce
device. In the following section, [ will explain how it works, and then analyze the force
members of the mechanism to find out relation of the angle between the two arms and the

stretch force. The shape of the pulleys is circular in this section.

3.1. Link Mechanism

Figure 4 shows the proposed link mechanism for force generation. Two arms AB and AC
connect the ends of two subsidiary links at points D, and D, at a distance r;, from the
point A. The other ends of the links are put together to make a joint J. The partial links
AD,, AD2, and subsidiary links JDl, JD2 are connected with each other using pivot joints
with rotatinal axes perpendicular to the plane in which the two arms rotate. Therefore,
the links compose a foﬁr-bar linkage mechanism A-D,-J-D,. Since the four links are of
equal length, the four points A, D p J;and D, make a rhombus. The gear G, located at the
point D, is fixed to the link JD,, but rotates with respect to link AB. Similarly, the gear
G, located at the point D, is fixed to the link JD,, but rotates with respect to link AC.
Therefore, two gears G, and G, rotate about their axes at points D | and D,, with the links
JD, and JD,, respectively. The gears G, and G, drive the pulleys P, and P, through the
gears G; and G,. An extension spring, S, joins the two ropes. The other ends of the ropes
are wound around the pulleys P ; and P,. The rotational motions of the pulleys adjust to

the length of the spring for an optimum tensile force.

If it is required to attach the pulleys P, and P, on the links JD, and JD,, the gears G,
and G, would be fixed to the links AD, and AD,, respectively. Depending on the desired
relation between the distance H and Force F, we can omit the gears G4 and G, and replace
the gears Gl and G, by the pulleys P, and P,, respectively. That is, the centers of the
pulleys are attached to the points D, and D,. We will call such an arrangement a "simple
mechanism”, while the arrangement in Figure 4 becomes a "complex mechanism"®. The

major difference between the mechanism in Figure 4 and the one in Figure 2 is that the

'''''''''''''''''''''''''''''''''''''''
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cnds of the spring are wound round the pulleys, using flexible ropes. Two of the links of
the four-bar linkage arc actually sections of the two arms. No other links are required for

the mechanism in Figure 4.

3.2. Analyses of Motion and Force Members of the Mechanism

The mechanism in Figure 4 is valid only if the spring extends as the angle @ increases. It
must now be determined whether ‘the spring actually extends when the two arms open.
Therefore, we develop the relation between the angle 0 and the length of the spring as
follows. Let the radii of the gears G, and G, be r|, and those of gears G, and G, be ,.
Also, let the radii of the pulleys P | and P2 be 7,. Now let M be the minimum length of the
rope connecting the pulley with the end of the spring, aned W be the length of the rope
around a pulley. The length W depends on the number of turns around the pulley. Hence,
the total length between the two points where the ends of the ropes mcet the pulleys is
2M+L, where L is the variable length of the spring. We subtract the length,
2(r +7,+1,)sin(0/2), between the centers of the two pulleys from the total length, 2M+L,
to calculate the length of the rope which is wound round the pulleys P, and P,

2(2n—8)r -rq
2M+L=2(r+r,+7y)sin(6/ 2)+‘——;2-—+2r3(21r—0/ 2)+2W

We then differentiate L in equation (1) by 9 to yield

dL 1
E=(ro+r 1 +7o)cos(0/2) —ry( 1+2;).

(2)
The equation implies that the value of L becomes large as the angle ¢ increases when the
value of dL/df is positive. In most cases, the value is positive since the values of 71» T and
75 are smaller than that of ro- The spring must extend to give a large force when the two

arms open.

We analyze the relation between the angle 6 and force F in Figure 4, illustrating the

force. The force components are exerted on each link of the mechanism. Let T denote the

output force of the spring S, then the gear G, is driven by the force T,




(3)

The compression force, U, excrtd on the link JD is obtained by setting the moment about

the point D, to zero.

_ 2r, T,
~__1'0.?1'110'
(4)
Expressing the moment about the point A for arm AB gives
hF .
{(rg+r +ry)cos(8/2)—r,}T= 2 sin(0/2)+ry Usind.
(5)
Equations (3), (4), and (5) are combined to give
2T{(rg+r +ry)cos(0/2)—ry(1+2r, / o)}
F= hein(02)
(6)

Figure 5 shows a geometrical illustration of the mechanism for two different values of 4.
The symbol Omin denotes the minimum value of 8. When the angle between the links is 6,
the link JD1 is inclined by an amount y=0—0_;. and the pulley rotates by
6=(0—0_.

mn
by ¢ with respect to the initial configuration; i.e., the total angular shifts of the pulley is

)/2. When the links are separated by the angle, 8, the pulley P, is rotated

given by

81 81
p=6+—7=(0.5+—)(0—0
T2 T

).
2 msn

(7)
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. Suppose L . expresses the length of the spring when 0=0, ., then we have
A L=2(ro+r|+r2)sin(0/ 2)—-5-’!. ~Ny
o | (8)
e where
E=.2(‘r()+rl +r2) Sin(onsi u/ 2)—Lmin’
(9)
’7|=¢'3:
. (10)
::. No="7-
: (11)
7 § is the length of the rope connecting the spring and two pulleys when =0 _. . 7, and 7,
are the lengths of the ropes which unwind from the pulleys P, and P,, respectively. When
two arms intersect with the angle 8 . , we can express the length L . by ¢ L, where ¢ is
a constant greater than 1. The force T is written as
=k [2(ry+r +7ro){stn(0/2)—sin(6, ;. /2)}+Ly(eg—1)—2r34].
) (12)
-
. We obtain the final form by inserting equation (12) into equation (6)
F=2k [2(rg+r,+r,){sin(8/2)—sin(8, ; /2)}+Ly(eg—1)—2r;4]
: e 1
- X [(rg+r +ry)cos(8/2)—r4 1+2r2)] h-oi(0]2)"

(13)

In the case that the pulleys are attached on the subsidiary links or arms of the scissors

structure, Equation (13) should be modified by replacing (ry+r +r,)with(rg—r,—r,).
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3.3. Relationship Between Foree and Deformation of the Mechanism
By using the equation(13), we obtain the relation between the distance [ and force F,
since the value of €, can be used Lo make the force ¥ equal to the ideal force @ when 0 is

0

r, and r, are zero. Thercfore, Equation (13) is simplified as

nin® First, we consider the "simple mechanism® which uses only the pulleys. In this case,

_Zk[Zro{sin(W 2)—sin(0, ;. / 2)}+L0(£0— 1)—-2r.¢] X [rycos(0/ 2)—r3]

F= 7Y, )
h-31n(0/2) (14
where
¢=(0_amin)/ 2.
(15)

Equation (14) is also valid for the simple mechanism having no subsidiary links; that is,

when pulleys are fixed on the two arms.

Figure ‘6 shows the calculated results of the relation between H and F depending on
radius of the pulleys in a complex mecl.xanism combining pulleys and gears as shown in
Figure 4. For instance, the curve c; is obtained when r,=6 mm. Figure 7 shows the
results of the relation between H and F in a simple mechanism having no gears. In this
case, equation (13) applies, with r,=r,=0. The curvec, shows the result for a pulley of 15
mm radius. It is evident that the curve c  changes the force F remarkably. Since no

pulleys are considered, the curve corresponds to that in Figure 3 (a).

By comparing the results of the relation between H and F for the complex mechanism
with those of the simple mechanism, it is evident that the value of r; is smaller than that
of the simple mechanism for the same amount of force. Also, the shape of the curves is
smoother than that of the simple mechanism. Based on these facts, a combination of
pulleys and gears is desirable. The curves in Figure 6 and Figure 7 imply that it is difficult
to make the force I constant over a wide range of the distance H. However, we can see

intuitively that there is an appropriate curve between the curves ¢y and c, that will

produce a force roughly equal to the ideal force Q. We discuss optimization methods in
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the lollowing scction to determine dimensions for the pulleys that will result in an

appropriate curve.

4. Optimization of Force Generation Mechanism

The force generation mechanism, or more specifically the dimensions of the pulleys,
should be exactly determined to adjust the length of the spring [or generating the force we
wish. We consider two types of pulleys: One is a circular pulley which is commonly used.
The other is an eccentric non-circular pulley. In the "complex mechanism,® the
parameters r, and r, also affect the characteristics of the force generation. However, these
are out of the scope of this paper. In determining the dimensions of the pulleys, we
propose analytical and approximate methods. Optimization of the spring elasticity is also

discussed, once the parameters of the pulleys are given.

4.1. Analytical Method

The force Fis calculated from equation (13). At this point, we express the radius r; by
the term r(p) defining the relation between the radius of the pulley and its angular shift p.
The force F'is given by

F=2k[2(rg+r +r)}{sin(0/2)—sin(0,_. /2)}+Ly(eg—1)—2G]

r 1
X [(ry+r +ro)cos(8/2)—r(p)(1 +2é)] e}

(16)

where G stands for the term expressing the circumference of the pulley which rotates as
increases from 6 . . In this paper, we consider a pulley for which the relation between the

pulley radius r and angular shift p is linearly expressed as
r (p)=2ap+b.

(17)

The parameters, a and b, are adjusted to determine the shape of the pulley. Evidently, the

value of b is positive and that of a is zero when the pulley is circular. In such a case if the

PALARLOLEN I
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pulley radius is expressed by equation (17), we have the following relations for G,

= /o ¢’(P)dp;

=a¢2+b¢r
(18)

and

r(p)=2a¢+b,
(19)

where ¢ is determined from equation (7). Therefore, equation (16) is written by the

expression

F=2k[2(rg+r +r,){sin(8/2)—sin(0, . /2)}+Lyes—1)—2(ad?+b4)]

"l 1
X [(ro+rl+r2)cos(0/2)—(2a¢+b)(1+2r—2')] sin(0]2)
(20)
Now we look for a function giving the ideal value, @ for F'such that

Q=/(0)

(21)
Then, we define the error function E@ by the relation

E9={F9-Q0)2.

(22)

The values of @ and b are determined by making the value of £f minimum in the range of

6. That is, to minimize the value calculated by

......................
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s Since the expression of £ is decomposed into the terms 6”sin'0cos™0 (p, m, n are
positive integers), the integration in equation (23) can be performed and expressed in
terms of a and b (see Appendix B for detailed calculation). By differentiating the function
Z with respect to a and b and equating them to zero, we have two cquations with unknown

‘ parameters @ and b. It is not easy to solve such simultaneous equations in general.

However, we notice that we can assign the value of the parameter b. Also, the parameter

- ¢, should be given by considering the initial condition § = 0 . (p=0,4==0), where the

value of Fis @y=f (0, ). Therefore, from equation (20)

\ 1 hQqysin(0, . ./2) "

. €= .

- 07" 2kLy{(rg+r,+ry)cos(0, ;. [2)—b(1+2r [r,)}

. (24)

':_ Then, we can determine the value of a by solving a cubic equation.

X

- When the shape of the pulley is circular, the calculation process is simple, since the value
of a is zero and we can determine the value of b by solving the equation obtained by
differentiating the function Z in equation (23) with respect to b. The knowledge of b is
useful in the calculation of a. We can recommend that the optimum radius of the circular
pulley be found first, so that the parameter a for the non-circular pulley can be calculated

; by using the value of b.

: 4.2. Approximate Method

We can determine the optimum dimension of the pulley also by using the Least Square

Method (LSM), as long as the change of the radius of the pulley as a function of angular

displacement is smooth. Let QJ. denote the ideal value of F when § = 01, then we have the

following expression from equation (20) since the equations (19) and (24) are valid:
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F =2k [2(ry+7, +r2){sin(oj/2)-—sin(0m‘.“/2)}+J—2( a¢2j+b¢j)]

g 1
X [(ry+7y '.{-rz)cos(e j/ 2)—(2a¢ j+b)( : +2€) ] h-sin(0,/2)

(25)
where J is the term of Lj(e_—1) which is written as
hQysin(0, . /2)
J=2k{(ro+r (+ra)cos(0, . /2)-b(1+2r,/7,)}
(26)
and
"
¢,=(°-5+§)(9j"0m;n)°
(27)

Subtracting Fj from the ideal value @ ;5 and squaring the result given the absolute error Z.

z=3 (FQ)
’ (28)

Several sets of data are used to make the force as close to the ideal force as possible.
After summing the terms obtained by using these actual data, we differentiate the
summation, Z, with the parameters a and b. Since the procedures are similar to those
described in Section 4.1, we can determine the values of a and b, by setting the results of
the differentiation zero, to make the error minimum. When the pulley is circular, the

value of a is zero and we can solve for the unknown parameter b

3 2 —
ZU, %+ ZU, B+ ZU, b+ ZU, =0




- (29)
The terms UU' . U"J' are shown in Appendix C.

When the pulley is eccentric and non-circular, we can assign a value for 6. It is

LS AR SN

" recommended to use the solution of a circular pulley for the assignment so that the value

of a can be obtained by solving a cubic equation.

'I '-' '-‘ «*

»

3 2 —_
LS, a%+ LS, a*+ £S, a+ £S, =0.

D
'y e
.

(30)

The terms S, i S 45 37€ shown in Appendix D.

As long as the shape of the pulley is smooth, the spring retracts or extends as the rope
winds in a spiral around the pulley. If the effective angular range exceeds 27x(rad), the rope
can turn many times around the pulley by extending the pulley groove to form a fusee as
shown in Figure 8. The shift of the groove along the axis of the fusee will be negligible
when the effective angular range is less than 27(rad). In this case, we can make flat pulleys

of non-circular-shape by interpolating radii along the pulley so that the groove makes a

single smooth loop.

< Figure 9 shows the rope connecting two non-circular pulleys P, and P,. The thick curve

is the effective groove radius and the broken curve is for the extension of the curve for a

R R R

fusee. For a fusee, the rope detaches from points u, and u, since the groove is not in one
plane. For flat pulleys, the rope detaches from points v, and v,. The length between the
points v, and v, is not equal to the length between the two rotational centers (i-e., El and
E,) of the fusee, regardless of the sign of the parameter a. Since the equation (25) is no

longer applicable we consider a formula for the dimensions of the flat pulleys below.

Let M denote the angle between the line connecting points E, and u, and the line

AT Al

connecting points E, and v,. Also, let w denote positional displacement as shown in Figure

9. Figure 10 reveals a method for calculating the distance s and the displacement w. The
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profilc of the groove is written in the coordinate system (X,Y) as

X 2+Y2={2a¢+b—2ulan 'l(Y/X)}z.
(31)

If the value of a is small cnough we can approximate that

tan~'(Y/X) =~ Y/ X.
(32)

Inserting equation (32) into equation (31), and letting the value of the differential dY/dX

approach infinity, we have

=tan 204+’ ( )
33

ry=vV4a’+(2ap+5)%.
(34)

Given an initial condition, such as ¢ = 0, it is evident that r; is equal to b when a is less
than or equal to zero. Equation (34) is valid when a is positive. Then, we define 4, for the

value of 73 in the initial condition.

{ b, a < 0
Fon=
Eo I RV 4az+bz, a > 0
(35)
It follows that
w=r3tan)\.
(36)

The values of \ and w are positive when a is positive, and vice versa. Following the

procedure of equatioh (25), we obtain the following expression for the force F # :

-----------
------------

--------------------------------

.......
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F=2k [2(ry br 41 ){sin(0 '/ 2)—sin(0,,, /2)}+J-2 {a(¢j— )‘j)2+b(¢j' Xj)}—2wj]

X[(rg+r, +ry)cos(0./ 2)—'.30( ! +2;;')] h-sin(0 J/ 2)’
2 (37)

~ where

hQ(lSin(onuin/ 2)
2k{(rg+r +r,)c08(0, ., /2)~T 41427, /7,)}

J=
(38)

By assigning an appropriate value to b, the value of ., is given by equation (35). Then
assuming a small value for a, we can obtain the force Fj from equation (37) and determine
the error Z by evaluating equation (28). The form of Z is too complicated to differentiate
with respect to @ and b. As a result, it is difficult to find a unique value of unknown
parameters a and b. To find out the most appropriate value of a for making the value of Z
- minizaum, we can check the value of Z by adding or subtracting a little to zero. Although

this process is tedious, we can obtain the optimum value.

-:-I If the dimensions of the pulleys are given, we can optimize the force generation
- mechanism by selecting an appropriate elasticity for the spring. It is easy to extract the
y form to determine the elasticity since equations (25) and (37) expressing the force Finclude
only the term k. That is, we subtract equation (25) or (37) from the ideal value Q ; and
- square the result to determine the absolute error Z in equation (28). Several sets of data
are used to make the force as close to the ideal force as possible. After summing up the
terms which are obtained using actual data, the summation is differentiated with respect

to k . Equating the results of the differentiation to zero, so that the error becomes

minimum, we can determine the elasticity, k, of the spring.




5. Design of Pullejrs and Experimental Results

approximate method. After delermining optimum shapes for circular pulleys, and
eccentric non-circular pulleys, in the simple and complex mechanisms under the conditions
that @ is constant and equalions (17) and (24) are valid, the results of the optimization are
compared to find out which is most accurate. [Experimental results are given for the

|

.

!r-

ﬁ The dimensions of the pulleys are calculated using cither the analytical or the
§ relation between the distance, H, and force, F, to verify the validity of the optimization.

P

5.1. Circular Pulley

% We take the condition in equation (24) into consideration and use cquation (25). When

E‘ the shape of the pulley has a circular form, the value of a is zero and the radius b is

3 obtained by solving a cubic equation. Figure 11 shows the results of the relation between

: the distance I and Force F when @ = 0.5 Kg. Results for the circular pulleys in simple

E and complex mechanisms are shown by curves (a) and (b). The force from the complex

E mechanism comes closer to the ideal force, @, than that from the simple mechanism.

b 5.2. Fusee

X Circular pulleys can be used to produce a force, F, which is nearly equal to the indicz ‘,'ed

:\: force @. However, the curve expressing the relation between the distance H and Force F'is

X not similar to the curve indicated by the function in equation(21). In fact, the curves (a)
and (b) in Figure 11 are not satisfactory to determine a constant force over wide ranges of
0. Therefore, we have to consider pulleys of non-circular-shape. The dimensions of the

. fusees are determined by finding the parameters ¢ and b which make the value of Z in

equation (28) minimum. We suppose that the displacement of the groove along the axis of
the pulley is small enough to be neglected. Figure 11 (c¢) shows the result of the relation
between the distance A and Force F of the pulley for the simple mechanism and Figure 11
(d) shows the result for the complex mechanism. It is evident that not only the force but

also the shape of the curve becomes similar to that of the curve given by the function Q.

The curve (d) is almost paralle! to the horizontal axis.
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> 5.3. Flat Pulleys of Non-Circular-Shape

We designed flat pulleys having eccentric non-circular shapes by using the iterative

NN
LI LN

method which was discussed in the latter hall of Section 4.2. The curve in Ifigure 11 (¢)
shows the results of the relationship between the distance II and force F for the simple

mechanism. Figure 11 (F) shows the result for the complex mechanisin. The shapes of

a: l: DAY ." _‘

these curves are found (o be similar to those of the fusees.

5.4. Experimental Results

In the actual design, the size of the pulley is an important factor. Since the size of the
pulley in the simple mechanism tends to become large, the complex mechanism is
recommended to keep the force generation mechanism compact. In addition, a mechanism
- that has a large value of r, + r, and a smaller value of 7, /r, is recommended for obtaining
a large force F. However, smallness of rl/r2 makes Ty large and prevents fabrication of
compact device for the force generation. Therefore, a complex mechanism was adopted for
the equipment shown in Figure 12. The physical dimensions of the mechanism are
k=0.14Kg/mm, h=95mm, ro=35mm, r,=7.5mm, r,=5mm, QJ=0.5Kg, 40°<9<100°.

For these dimensions, circular pulleys and flat pulleys of non-circular-shape were made.

The circular pulleys have a diameter of 5=6.9mm. The curve (a) in Figure 13 shows the

.l .l"l "‘l ‘l'.l

calcuated relation between H and F, and dots show the experimental data for the circular
pulley used with the complex system. The optimized parameters of the flat pulley of non-
circular-shape are a=-0.66 and 6==8.5mm. These values are obtained by considering the
position where the rope detaches from the groove of the flat pulley. The curve (b) in

Figure 13 shows the calculated result and the cross marks show the measured result. The

curves (a) and (b) in Figure 13 correspond to those of (b) and (f) in Figure 11, respectively.
The relationship between H and F for the simple mechanism are shown in Figure 14. The
: curves (a) and (b) in Figure 14 correspond to those of (a) and (e) in Figure 11, respectively.
The fact that the calculated and measured results are close indicates that the analysis for

calculating the force F are valid. We can confirm that the eccentric non-circular shape in

L

the flat pulley makes it possible to generate a force closer to the designated force @, than

the pulley of circular shape can achieve.

Figure 15 illustrates a profile of the groove and the characteristics of the p versus G of

NS A RN




the flat pulley. The pulley is effective only in the range 0°< 9 < 120° for which case

40°<0<100°. The radii of the unused area of the pulley are interpolated so that the shape
of the pullcy becomes smooth. The profile of the groove and the characteristics of p versus

G for the fusces are almost Lhe same as those of the flat pulleys.

The result of the approximate method is almost the same as that of the analytical
method when the curve expressing the function f(0) is smooth. Thus, in a case where the
value of @ is constant, the approximate method is shown to be effective for practical use in

reducing the amount of computation.

6. Conclusion

The design and optimization of a force generating mechanism have becn discussed. The
mechanism has been applied to a mobile robot for inspecting pipes that vary between 90
mm and 120 mm in diameter [3]. A major advantage to the mechanism is that it makes
servo control unecessary. The mechanism uses an extension spring and a pair of specially
designed pulleys to achieve a desired force/motion trajectory. As the mechanism opens
and closes, (adapting to the inside diameter of the pipe) a linkage drives a pair of gears
which rotate a pair of pulleys. The pulleys are de.igned with a non-circular shape. As
they rotate, they stretch an extension spring. The rate of extension is determined so that
the mechanism exerts a nearly constant force against the inner walls of the pipe. Exact
and approximate methods are considered for determining the optimum relationship
between pulley radius and angle of rotation. The approximate methods can be used
effectively as long as the desired force/motion relationship is a smoothly varying function.
In the final design, the pulleys are driven by intermediate gears which permit the use of

smaller pulley diameters.
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Appendix A

Relations between F and @ are as follows:

(a)
2krg 0
F=T,(L——L0)cot (‘2‘) where  L=2rsin (0/2).

(b)
2It:m'0

="nL (L—-Lo), where L::{r 20—207‘0603 (0/2)+a2}l/2'

()
2

=§:%-(L_L°)ws (g)’ where  L={r 20‘4‘1(70—0)603 2(0/2)}1/2.

(d)
krgl{L—L)

F=2x {pcos(0/2)—gsin(6/2)} where  L=rycos(6/ 2)—{a®-r 203";"2(0/ 272,

(a2+f2o—L2l) L
P= (2ary) and g=7 sin(0/2)

(¢
il

F=h

(L—Lg)eot(8/2), where L=(r,—2a)sin(8/2).

(f)
k(L—Ly) 720 (ro—c)2
F= " {?cos(0/2)—ro+

}, where p ={02+'n—rosin2(0/2)}l/2,

q={62—(r0—c)2sin2(0/2)}1/2, L=rcos(8/2)—(ry—c)cos(0/2)—p—q.
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' ; Appendix B

Denote [ p”sin™0cos™0d0 by I[m,n,p].

Whenm > landn > 1,

PO ELEAL R

I [m,n,p]={07""sin™0con™ 0[pcost+(m+n)0sind)+(n—1)(m+n)I[m,n—2,p|

G —mpl{m—1,n~1,p—1]~p(p—1)fm,n,p—2]}/(m-+n)2.
- When m > 1 and n=0,

I [m,0,p|={07'sin™ 10[psing—mbcosb|

+m(m—1)I[m~2,0,p]—p(p—1)1[m,0,p—2]} /m?.
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. Appendix C

Let the symbols g,, Gy Gy» 94 U5, and gg express the following terms.

0, =2{ry+r,+r,){5in(0/2)—sin(0, . /2)}
9y=h@y/(2K)sin(0, ;./2)

gg=(rg+r +ry)cos(0. . /2)

g =(rgtr +ry)con(0/2)

gs=1+2r,/r,

gg=2k/h/sin(0/2)

Then, we have
U=—2¢"9,¢
Uy=94{9,9%5+28(9395+9,95)}
Us=—{9494(9,95+2938)+95949, ~Q95}
U=9,949,~Q9;

where

U4 =9193+92-




Appendix D

Let the symbols g,, 9,, 94, 94 95 and gg have the similar expressions as shown in

Appendix C. Then, we have
S, =16¢";g4$"
52="1295904’3‘11
Sy=20{05(959,4° | —2Q9)+949,6(1959,+99,)}

S4 =Q3(Q—geq lqz)

where

9%=9% +92/ (93"595)—'2b¢

Q2=94’695

Q3=M2+gsql°




Figure 1: Basic mechanism for gbtaining the stretch force

¥ al 4 ¢ (b) (c)
. A 4
: o
(s h
.
8 (o
(d) (e) (f
I
g
- 2
- o=t :
a a
Figure 2: Various kinds of mechanisins for generating the force
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i Figure 3: Calculated results of the relation between H and F under such

: conditions thath =r, = 100mm, k = 0.1Kg/mm and 30° < 4
- < 100°. The value of a in (b), (), (d), (e) and (f) are
i 3/5r,, 2/8r,, 3/4r,, 1/6r, and 2/3r, raspectively.
Parameters b and ¢ are 1/3r, and 3/4r,,.

Figure 4: Proposed mechanisin for the forcoe generation
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Figure 5: Geometrical illustration for analyzing equilibrium
of the mechanism in force

N b Flkg)

4.5 4

3.0
N 1.5
hY
y 4

0 —
y Figure 6: Calculated relation between H and F when circular pulleys are used

in the complex mechanism undgar such conditions that h = 95mm, o= 35mm,

y r,=7.5mm,r,=5mm, L= 10.05mm, k = 0.14Kg/mm, Q = 0.5Kg and 40°
A < @ < 100°. The curve ¢, is obtained under
) ry=0. Tie curves ¢ to ¢ increase ry with the incr-inent 2mm
¥ in this order.
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Figure 7: Calculated relation between H and F when circular pulleys are used
in the simple mechanism under the same conditions to those used in the
complex mechanism. The curve ¢, is obtained underr, = 0. The curves

c,toc, increase r, with the increment Sinm in this order.
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Figure 9: Connection of a couple of non-circutar pulleys by ropes
through a spring
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Figure 10: Profile of the groove in the coordinate system (X,Y)
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. Figure 11: Optimized relation between H and . The curvas (o) and (b) are the
_ results of circufar pulicys for the simple and complax mechanisms. The
- values of b are 18mm and 6.9mm, respectively. The curves (c) and () are the
: results of fusees of non-circular shape for the simple and complax mechanisms.,
- The values (a.b) are (-0.69, 13.0) #nd (-0.60, 8.5). respactively. The
curves (e) and {f) are the resulis of flat pulleys of non-circular shape for
- the simple and complex mechanisms. The values (a,h) are (-0.60, 17.25) and
. (-0.66, 8.5), respeciively.
) Figure 12: Ovarview of forco measurement by the fabricated mechanism
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Figure 13: Relationships between F versus H of the complex mechanisin. Curves a
and b are the calculated resuits relating to the circular and non-circular
pulleys. Dot and cross marks are the experimental results relating to those
pulleys, respectively.
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Figure 14: Relationships betwaen F versas H of the simple mechaism. Curvesa
and b are the calculated results relating to the circular and non-circular
pulleys. Dot and cross marks ive tiie experimental rosults relniing to those
puileys. respactively.
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Figure 15: Fabricated pulleys which are used to obtain the curve b in Fig. 13;
(a) profile of the groove, (b) characteristics of the p versus G.
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